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Abstract. The phase diagram of halogen-bridged mixed-valence metal complexes (MX) has
been studied using a two-band extended Peierls–Hubbard model employing the recently developed
density-matrix renormalization group method. We present the energies, charge- and spin-density
distributions, bond orders, and charge–charge and spin–spin correlations, for the ground state, for
different parameters of the model. The effects of bond alternation and site-diagonal distortion on
the ground-state properties are considered in detail. We observe that the site-diagonal distortion
plays a significant role in deciding the nature of the ground state of the system. We find that
while the charge-density-wave (CDW) and bond-order-wave (BOW) phases can coexist, the CDW
and SDW (spin-density-wave) phases are mutually exclusive in most cases. We have also studied
the doped MX chains both with and without bond alternation and site-diagonal distortion in the
CDW as well as SDW regimes. We find that the additional charges in the polarons and bipolarons
for hole doping are confined to a few sites, in the presence of bond alternation and site-diagonal
distortion. For electron doping, we find that the additional charge(s) is (are) smeared over the entire
chain length, and although the energetics implies a disproportionation of the negatively charged
bipolaron, the charge- and spin-density distributions do not reflect this. A positively charged
bipolaron disproportionates into two polarons in the SDW region. There is also bond-order evidence
for compression of the bond length for the positively charged polaronic and bipolaronic systems
and an elongation of the bonds for systems with negatively charged polarons and bipolarons.

1. Introduction

The halogen-bridged mixed-valence metal complexes (HMMC) are quasi-one-dimensional
chains that exhibit both Peierls distortion and mixed valency. This is attributed to the
presence of strong electron–electron interactions as well as strong electron–lattice interactions.
Additionally, the degeneracy of the ground state of the HMMC chains supports solitonic
excitations as in polyacetylenes. These aspects of HMMCs have resulted in considerable
theoretical and experimental focus in recent times [1–6].

The HMMCs are composed of transition metal (M) ions which are bridged by halide (X)
ions. Each metal ion is surrounded by four monodentate ligand molecules such as ethylamine
(L), or two bidentate ligand molecules such as ethylenediamine and cyclohexanediamine (L2).
Symbolically, HMMCs can be represented as [M3−ρL4][M 3+ρX2L4]Y4, where M can be Pt,
Pd or Ni, and X can be Cl, Br or I;ρ denotes the deviation of the metal valency from the
average value of +3; and Y is a counter ion such as X− or ClO−4 for charge neutrality. The
dz2 orbital on the metal ion is singly occupied when its oxidation state is +3. Along the M–X
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backbone, the electrons are delocalized due to the overlap of the dz2(M) and pz(X) orbitals. If
the electron–electron interactions were weak compared to the electron–phonon interactions,
the diagonal electron–lattice interactions would dominate. This would result in a Jahn–Teller
distortion of opposite phases at successive metal-ion sites. The metal-ion site at which the dz2

orbital is stabilized would be doubly occupied while that at the adjacent metal site would be
empty leading to a CDW state. In the opposite limit, the strong electron–electron interactions
force single occupancy of the metal dz2 orbitals and the chain would be undistorted as there
is no electronic stabilization associated with the distortion due to single occupancy of the
metal orbitals. In this limit, a SDW state would result. As platinum is a 5d system, the d
orbitals are more diffused resulting in weaker electron–electron interactions and, indeed, the
broken-symmetry state observed in the Pt complexes is usually a CDW state. At the other end
is the nickel system with compact d orbitals and one usually observes SDW states in the Ni
complexes. The amplitude of these CDW or SDW distortions can be tuned continuously by
changing the metal ion, the halide ion, the ligand, or the counter ions.

The CDW ground state in these systems has two degenerate configurations and hence
there is a possibility of soliton-like excitations, besides polaronic excitations. The solitonic
states in the MX chains are more localized and are believed to be longer lived than the
solitons in polyacetylene chains. In the halogen-bridged mixed-valence platinum complexes
(HMPC) [5], evidence for midgap absorption, associated with solitons, comes from the high-
pressure studies of the optical spectra, wherein a band at half the charge-transfer excitation
energy is found on application of pressure. IR and Raman studies of a series of HMMCs with
decreasing metal–metal distances have also been carried out to simulate pressure and determine
several microscopic parameters essential for theoretical modelling of the PtCl chains [7]. The
electrical conductivity and electron spin-resonance (esr) studies [8] of halogen-doped HMPC
systems show that for low doping concentrations, polarons are formed which lead to enhanced
conductivity, and the charge carriers are found to have a spin. At increased dopant levels,
the esr intensity reduces although the conductivity increases. Furthermore, optical absorption
studies show the appearance of peaks below the optical gap. Hence, these studies suggest that
two positively charged polarons yield either two positively charged solitons or a bipolaron,
both of which do not have a spin. Photoinduced IR absorption studies [9] on HMPC systems
with weak interchain interactions have shown evidence for photogenerated solitonic states,
besides polaronic states. For large interchain coupling, the energy of formation of solitons
is high and the midgap absorption band in such systems was absent, although the polaronic
absorptions could be observed in these systems.

The MX chains were modelled by using a half-filled single-band Hubbard–Peierls model
including nearest-neighbour electron–electron interactions by many authors [4,10–12]. Nasu,
in the mean-field limit, obtained a phase diagram for the nature of the ground state, in the
parameter space ofU , the on-site electron correlation strength,V , the nearest-neighbour
electron–electron interaction parameter, andS, the strength of site-diagonal electron–phonon
coupling. The mean-field phase diagram showed regions where CDW and SDW ground states
exist as well as regions of coexistence of these two phases. It was further shown, within the
mean-field theory for electrons and an adiabatic approximation for the phonons, that the origin
of the photoinduced absorption was a distant hole polaron or an electron–polaron pair in the
excited state of the MX chain. However, this model, apart from within the approximation for
which it was solved, was quite inadequate due to the neglect of the pz orbitals on the halogen
sites. Ichinose [13] mapped the model to an anisotropic spin chain, in the limit of small on-site
correlations and adiabatic electron–phonon coupling, to describe the topological excitations
of the MX chain. Onodera [14] considered the continuum limit of the Ichinose model and
showed that it leads to the Takayama–Lin–Liu–Maki model, which is also the continuum limit



DMRG studies of metal–halogen chains 2397

of the discrete Su–Schreiffer–Heeger (SSH) model. He showed that the MX chains can support
solitons as in polyacetylene. A model similar to the SSH model was studied by Baeriswyl
and Bishop [15] who showed the existence of a charge-transfer state in the limit of strong
electron–phonon interactions. The intrinsic defect states such as the polarons, bipolarons, and
solitons, in this limit, were observed to be strongly localized.

Tinka Gammelet al first modelled the MX chains by employing a two-bandU–V model
(consisting of the metal dz2 orbital and the halogen pz orbital) at three-quarters filling. This
model was studied by them in different approximations. In the period-4 case, they observed
that the bond-order wave (BOW) phase exists only in a very small region near the point where
the site energies of M and X are zero, unlike in the single-band model where the BOW is
found over a wide range of parameter values. Moreover, they characterized the lowest state in
that region as being of mixed CDW/BOW character. They also predicted long-period charge-
density-wave ground states in the system, from an analysis of the model in the localized limit.
They studied the topological excitations of the model, treating the lattice in the adiabatic
approximation and the electron–electron interactions in the Hartree–Fock (both restricted and
unrestricted) approximation for various parameter values to characterize these excitations in
different systems. For small MX chains, they went beyond the Hartree–Fock approximation
and studied the properties of the chain by employing exact-diagonalization methods. They also
studied the model including the phonon dynamics but treating the electron–electron interactions
in the mean-field limit. For small Hubbard interaction strengths, perturbation theory was
employed to study the model. Huang and Bishop [3] studied the two-band model both in
the mean-field and random-phase approximations to study the lattice- and spin-polaronic
defects in Ni complexes. They found relative lattice distortion around the defect centre besides
the charge or spin disproportionation. The effect of interchain interactions on the nature of
the ground state and also on the energy gaps in the system were studied by including them
self-consistently in finite-MX-chain calculations, within a two-band model [16]. The effect
of interchain interactions on the stability of nonlinear lattice relaxation was considered by
Mishima [17] in the mean-field approximation within the one-band extended Hubbard–Peierls
model. Sunet al [18] employed a one-band model and in the mean-field approximation showed
that the electron–electron interaction reduces the CDW gap in MX complexes. There is also
an all-electron local density approximation calculation for MX chains which focuses on the
band-gap, dimerization, and SDW instabilities in these compounds [19].

All of the studies so far carried out on the MX chain systems suffer from the disadvantage
that they treat electron–electron interactions in the mean-field approximation, except in the case
of small chains where model exact solutions are obtained. The exact studies on small chains
are often inconclusive due to finite-size effects. However, the recently developed density-
matrix renormalization group (DMRG) method has proved to be very accurate for quasi-one-
dimensional systems [20]. In this paper, we report results of our extensive investigations of the
MX chain systems employing the DMRG method. We have studied the MX chains with up to
70 sites (35 MX units), employing the two-band extended Peierls–Hubbard model. We have
studied the neutral as well as charged MX chains to understand the properties of the ground
state as well as the photogenerated gap states for many values of the model parameters. Besides
energies, we have studied the charge and spin correlations in the system, the charge and spin
densities, as well as bond orders, to properly characterize the ground states in different regions
of the parameter space.

The paper is organized as follows. In the next section we introduce the model Hamiltonian
and the DMRG method as applied to the MX chains. In the third section, we discuss results
for the ground state of the neutral and doped systems. We end the paper with a summary of
our findings.
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2. The model Hamiltonian and the DMRG method

We have studied the HMMC systems employing theU–V –δ model. The Hamiltonian of this
model,Ĥ , for the metal–halogen chain can be written as a sum of the noninteracting term,Ĥ0,
which includes the renormalized static electron–lattice interactions and an electron–electron
interaction term,Ĥ1, as given by

Ĥ = Ĥ0 + Ĥ1 (1)

Ĥ0 =
N∑
i=1

∑
σ

ti [a
†
X,iσ aM,iσ + a†

M,iσ aX,i+1σ + h.c.] +
N∑
i=1

∑
σ

[εM,ia
†
M,iσ aM,iσ + εX,ia

†
X,iσ aX,iσ ]

(2)

Ĥ1 =
N∑
i=1

UM
n̂M,i (n̂M,i − 1)

2
+

N∑
i=1

UX
n̂X,i (n̂X,i − 1)

2
+

N∑
i=1

Vi [n̂M,i n̂X,i+1 + n̂X,i n̂M,i ] (3)

whereti is t (1− (−1)(i)δ). The summations run over all theN MX pairs, and the upper limit
of the summation is chosen to reflect the open boundary condition corresponding to a chain.
a

†
X,iσ (a†

M,iσ ) creates an electron with spinσ in the halogen (metal) orbital in theith unit cell,
andaX,iσ (aM,iσ ) is the adjoint of the corresponding creation operator. The operatorsn̂X,i

(n̂M,i) are the number operators for the halogen (metal) orbital in theith unit cell. εM,i (εX,i)
is the site energy of the metal (halogen) orbital in theith unit cell. UM (UX) is the on-site
electron–electron repulsion parameter for the metal (halogen) orbital. The nearest-neighbour
electron–electron interaction termsVi are calculated using the Ohno [21] interpolation scheme:

Vi = 14.397[(28.794/(UM +UX))
2 + r2]−1/2 (4)

wherer is the distance between the nearest neighbours of the MX chain. The distancer between
the pairs depends on the alternation parameterδ. When the bond alternation parameter,δ, is
zero, the nearest-neighbour distance is fixed at 2.447 Å. All of the parameters are defined in
units of the uniform transfer integralt , whose absolute value has been assumed to be 2.0. The
sign of the transfer integral is negative for an X–M bond (with the halogen on the left) and is
positive for an M–X bond. This accounts for the alternating sign in the overlap of the pz–dz2

orbitals of the halogen and the metal ions.
We have employed the DMRG method to obtain the ground-state properties of the above

Hamiltonian for largeN (635) whereN is the number of MX pairs. In the DMRG method
for the MX chains, we start with two MX units (four sites) and obtain the ground state of this
cluster with six electrons corresponding to three-quarters filling by an exact-diagonalization
procedure. We now imagine the chain to be built up of two halves, namely the left-hand half
and the right-hand half. We construct the reduced many-body density matrix of the left-hand
half, ρ(2)0,L , in the basis of the Fock-space states of the left-hand half of the chain from the
ground-state eigenfunction by integrating over the Fock-space states on the right-hand half as

(ρ̂
(2)
0,L)µν =

∑
µ′
Cµµ′Cνµ′ (5)

where|µ〉 and |ν〉 are the Fock-space states of the left-hand half of the chain and|µ′〉 the
Fock-space states of the right-hand half of the chain.Cµµ′ is the coefficient associated with
direct-product functions|µ〉 and|µ′〉 in the ground-state eigenfunction. The dimensionality
of the Fock space|µ〉 for a system consisting ofn units is l = 42n. The density matrix is
simultaneously block diagonal in both the particle-number sector and in theML

s -sector where
ML
s is thez-component of the total spin of the left-hand-half block. We take advantage of this

while diagonalizing the density matrix by diagonalizing each of the blocks independently. This
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also allows us to label each density-matrix eigenvector with the particle number,pL , in addition
toML

s . After diagonalization, the Fock space on the left is truncated by retaining onlym of
the density-matrix eigenstates corresponding to them highest density-matrix eigenvalues. If
we had retained alll density-matrix eigenvectors to serve as basis functions of the Fock space
of the left-hand half, we would have merely effected a unitary transformation of the basis
functions. Thel× l Hamiltonian matrixĤL(n) for the left-hand part of the chain is obtained in
the basis of the Fock-space states. This matrixĤL(n) is renormalized using the matrix̂OL(n)

whose columns are them eigenvectors of the correspondingl × l density matrix. Thus the
transformation matrixÔL(n) is anm× l matrix. The renormalized Hamiltonian matrix̃HL(n)

is given by

H̃L(n) = Ô†
L(n)ĤL(n)ÔL(n). (6)

The renormalized left-hand Hamiltonian matrix is now anm × m matrix representation of
the left-hand-half Hamiltonian in the basis of the density-matrix eigenvectors. The operators
a

†
M,i anda†

X,i , andn̂M,i andn̂X,i corresponding to each site in the left-hand part of the chain
are also obtained as matrices in the basis of the Fock space|µ〉, and are later renormalized
to obtain renormalized matrices in the basis of the eigenvectors of the density matrix of the
corresponding half-chains, in a manner similar to the method of construction ofH̃L(n). The
density matrix, the transformation matrix̂OR(n), the renormalized Hamiltonian matrix̃HR(n)

for the right-hand part, as well as the renormalized second-quantized site operators for the
right-hand part are all obtained analogously. Unlike in the calculations involving spin chains
and Hubbard chains [22], the MX chains do not have reflection symmetry, and all of the
quantities should be calculated separately for the right-hand and left-hand halves of the chain.

To get the Hamiltonian for the system withn+1 unit cells, a MX unit is added in the middle
of the chain. The Hilbert space of the new Hamiltonian matrix corresponding ton + 1 unit
cells is the direct product ofm states,|µ〉 from the left-hand block and|µ′〉 from the right-hand
block, and four states,|c〉 or |c′〉 (corresponding to|0〉, |↓〉, |↑〉, and|↑↓〉 configurations at the
new site) from each of the newly added unit cells, with the restriction that the totalMs-value
for the full chain is equal to the desired value and that the total system is three-quarters filled.

The Hamiltonian for (n + 1)-unit-cell system can be written as

Ĥ (n + 1) = H̃L(n) + H̃R(n) + n̂cεc + n̂c′εc′ +
Uc

2
n̂c(n̂c − 1) +

Uc′

2
n̂c′(n̂c′ − 1)

+ tn[ã
†
L(n)ac + h.c.] + tn+1[a

†
c ac′ + h.c.] + tn+1[a

†
c′ ãR(n) + h.c.]

+ VnñL(n)n̂c + Vn+1n̂cn̂c′ + Vn+1n̂c′ ñR(n) (7)

where the operators̃a†
L(n), ã

†
R(n), and their adjoints, as well as̃nL(n), ñR(n), are the renorm-

alized operators expressed in the truncated density-matrix eigenvector basis. The operators
â†
c (â†

c′ ) and their adjoints as well aŝnc (n̂c′ ) are expressed as matrices in the Fock-space basis.
The matrix representation of the HamiltonianĤ (n + 1) in the direct-product basis is obtained
as the appropriate direct product of the operators occurring in the Hamiltonian.

The eigenvalues and eigenvectors for thesen + 1 unit cells are obtained, and the reduced
density matrices for the left-hand and right-hand halves of the chain, each withn + 1 sites,
are constructed from the ground-state eigenfunction. In the next iteration, the procedure is
repeated by adding an XM unit in the middle of the chain. We have to add MX and XM units
alternately in the middle of the chain so that the successive sites of the full chain at any iteration
are not occupied by like ions.

When alternation is introduced, the unit cell consists of two MX units with one metal atom
having two short M–X bonds and another having two long M–X bonds, i.e.

[–M–X—M—X–] n.
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We start our calculations with a four-site MX system in the geometry corresponding to
M–X—M–X. To obtain the correct geometry of the alternated system, we require systems
with 4n + 2 sites (n integer). Thus, while at the end of each DMRG iteration we obtain results
for the proper MX system in the absence of static lattice distortion, in the distorted MX chain,
only at the end of an odd-numbered iteration do we obtain the desired system. The halogen
on-site energy,εX, is negative, while the metal on-site energy,εM, is positive when the metal
has two short bonds with the halogens and is negative when it has two long bonds.

The lack of reflection symmetry of the MX chain leads to a modified DMRG algorithm for
finite systems. Each iteration in the finite DMRG procedure goes through in two steps. In the
first step the left-hand part of the system is increased in size by one site while the corresponding
right-hand part is decreased in size by one site as in the usual finite-size DMRG algorithm [20].
On obtainingρ(2N−4)

0,L , the density matrix of the(2N − 4)-site left-hand part in the 2N -site
chain system (the superscript in parentheses refers to the iteration index in the finite-system
algorithm), we progressively rebuild the desired 2N -site system (N MX units), increasing the
size of the right-hand part while correspondingly reducing the size of the left-hand part. In
this process, we rebuild the density matrix of the right-hand part for every size as the density
matrix of the full 2N system. This procedure now yieldsρ(N−1)

1,R and is continued till we obtain

ρ
(2N−4)
1,R . At this stage, we reverse the process and increase the size of the left-hand part of

the system from two sites while simultaneously decreasing the size of the right-hand part until
we construct theρ(N−1)

1,L density matrix. Now, employingρ(N−1)
1,L andρ(N−1)

1,R , we build the full
2N system and obtain its desired eigenstates. This completes the first iteration of the finite
DMRG procedure of the system without reflection symmetry. The whole iteration procedure
is repeated now withρ1,L andρ1,R until satisfactory convergence in the energy is attained.

To check the accuracy of the DMRG procedure, we have carried out the following test.
For system sizes up to seven MX units (N = 7), we have compared the results from DMRG
calculations with exact calculations. The maximum error in the ground-state energy is of the
order of 0.01%, with a DMRG cut-off ofm = 80, and we use this value ofm in all of our
calculations. The dimensionality of the Hilbert space corresponding toMs = 0 (the 4n-site
system) or 0.5 (the (4n + 2)-site system) andNe = 3

2N varies in the range 6400 to 7000,
depending upon the model parameters, for this value ofm. The resulting Hamiltonian matrix
is very sparse. The total number of nonzero matrix elements is≈5× 105. We exploit the
sparseness of the Hamiltonian matrix to reduce the storage requirement as well as the CPU
requirement by avoiding doing arithmetic with zeros. We have used the Davidson algorithm for
a symmetric Hamiltonian matrix to get the lowest few eigenvalues. The Davidson algorithm,
which is a hybrid of the coordinate-relaxation method and the Lanczos method, has been
widely used in quantum chemical computations and is known to be both robust and rapidly
convergent.

We have also compared the properties of the interacting and noninteracting DMRG ground
state respectively (a) with exact properties of small interacting systems using the valence band
method [23, 24] and (b) with exact properties of large noninteracting systems. The properties
that we have compared are the bond orders, and the charge and spin densities (where the three-
quarters filling leads to an odd-electron system). The comparisons are carried out for both
neutral and doped systems. We find that the agreement between properties calculated from
the DMRG and those obtained from exact cases is excellent. We note that even in the latter
case the agreement between exact Hückel and DMRG Ḧuckel calculations is very good. The
checks presented above have been made by employing the infinite DMRG algorithm. We have
not presented finite DMRG results for noninteracting cases as the infinite DMRG algorithm is
itself in very good agreement with exact results. We also find that the finite DMRG algorithm
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gives results which are not significantly different from those obtained from the infinite DMRG
algorithm even in the worst cases. All of these checks provide sufficient confidence in our result
to allow us to draw unambiguously some important conclusions concerning the instabilities in
doped and neutral MX chains, using only the infinite DMRG algorithm.

3. Results and discussion

We have studied the ground state of the MX chains in different regions of parameter space to
explore the phase transformation from the CDW phase to the SDW phase. The parameters
UM, UX, andεM, εX characterize the metal ion and the halide ion. The orbital energy of
the halide ion,εX, is specified relative to the orbital energy of the corresponding metal ion
of the uniform MX chain. εX is always negative, reflecting the larger electronegativity of
the halogens compared to the metal ions. In the halide series, a larger negativeεX represents
chloride while the least negativeεX represents iodide, reflecting the electronegativity variations
in the halogen group. The on-site repulsion parameter for the halide ion,UX, is positive and
decreases as we go down the series from Cl− to I−. The Hubbard parameter for the metal ion,
UM, decreases as we go from the row I transition elements to the row III transition elements.
The parametersUM,UX andεX are varied fromUM = 2.5t ,UX = t , εX = −2t toUM = 1.5t ,
UX = 0.5t , εX = −t corresponding to the MX pairs NiCl to PtI respectively. TheεM-values
depend upon the strength of the diagonal electron–lattice coupling and so does the alternation
δ in the transfer integrals. The coupling constants for the diagonal and off-diagonal couplings
are assumed to be independent. Accordingly, we independently vary the transfer integrals as
well as the site energy at the metal site,εM. This is one of the crucial differences between a
polyene chain and the MX chain. In the former, the site-diagonal electron–phonon coupling is
taken to be zero, while in the MX chains it is nonzero by virtue of the crystal-field environment
provided by the halide ions surrounding the metal ions. The dimerization parameter,δ, has
been varied between 0.0 and 0.2. In what follows, we first discuss the results of our study of
MX chains at three-quarters filling, and then discuss our results for these chains with one and
two excess (fewer) electrons.

In figure 1 we present the dependence of the ground-state energy per MX unit (εMX ) of
the MX chains for different values ofδ for one set of parameters. The convergence to the

Figure 1. A plot of the energy per MX unit versus 1/N for different values ofδ for UM = 1.5t ,
UX = 0.5t , εM = 0.0, andεX = −t . δ = 0.0 (squares),δ = 0.1 (circles),δ = 0.15 (triangles),
δ = 0.2 (diamonds).
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Table 1. Fractional stabilization of the energy defined as(E(δ)−E(0))/E(0) of MX chains with
respect to uniform chains for different parameter sets. I:UM = 1.5t ,UX = 0.5t , εM = 0,εX = −t ;
II: UM = 1.5t , UX = 0.5t , εM = 0, εX = −2t ; III: UM = 2.5t , UX = 0.5t , εM = 0, εX = −t ;
IV: UM = 2.5t , UX = 0.5t , εM = 0, εX = −2t ; V: UM = 2.5t , UX = 0.5t , εM = t , εX = −2t .

δ I II III IV V

0.10 −0.0043 −0.0127 −0.0007 −0.0017 −0.0560
0.15 −0.0109 −0.0319 −0.0026 −0.0055 −0.0990
0.20 −0.0210 −0.0598 −0.0054 −0.0104 −0.1489

infinite-chain value is monotonic and from below. We have definedεMX as half the total
energy difference between successive iterations which differ by two MX units. This definition
corresponds to the energy of an embedded MX unit and is akin to that of the rings. It is well
known that the energy per site of Hubbard, extended Hubbard, as well as spin rings converge to
the limiting value from below [25]. In table 1, we have shown the dependence of the fractional
stabilization of the MX chain on introducing alternation for several sets of parameters. We
find that the alternation lowersεMX in all of the cases that we have studied, but the extent of
the stabilization is insensitive to variations inUM andεX when the diagonal electron–phonon
coupling is neglected. Since the energy per MX unit cannot be reliably extrapolated to the
infinite-chain limit (we do not observe saturation in energy per MX unit at 35 MX units),
we do not know the functional dependence of1E(δ) = E∞(δ) − E∞(0) on δ. However,
a rough estimate shows that1E(δ) = δη, η > 2. This implies that the MX chain may not
distort unconditionally. Our results on introducing the diagonal electron–phonon interaction
along with bond alternation,δ, indicate the dominant role of electron–phonon interactions in
determining the extent of bond alternation. In fact, in systems where bond alternation is indeed
found, the magnitude of the alternation is very large.

Figure 2. The charge density of M and X versus the unit-cell index. Open and filled symbols
are for M and X respectively. Squares represent the charge density forUM = 1.5t , UX = 0.5t ,
εM = 0, εX = −t , andδ = 0.1, and circles that forUM = 2.5t , UX = 0.5t , εM = 0, εX = −2t ,
andδ = 0.1.

In figure 2 we present the charge densities at the metal and halide sites in the alternating
(δ = 0.1) MX chains without diagonal distortions (εM = 0) for two extremal values ofUM and
εX. We find that the charge densities at the metal sites are very nearly uniform in both cases.
For small values ofεX andUM, the charge density in the metal orbital is larger at≈1.2±0.08,
while it is more uniform, with values in the range≈1.06± 0.04, for largeUM and largeεX.
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The charge densities at the halide sites are uniform and closer to two electrons whenεX and
UM are large. While the alternation in the transfer integral along the chain seems to promote
mixed valency, the large electron–electron repulsion at the metal site and the large site energy
of the halogen orbital have the effect of suppressing mixed valency. This is in conformity with
experiments wherein mixed valency is found in MX chains with heavier transition elements
as well as heavier halogen atoms. Increasing the alternation in the transfer integral does not
change the picture significantly. There is a slight increase in the amplitude of the charge-
density wave in the most favourable case that we have studied, corresponding toUM = 1.5t
andεX = −t .

Figure 3. The charge density of M versus the unit-cell index in the presence of site-diagonal
distortion. (i)UM = 1.5t , UX = 0.5t , εM = t , εX = −t , andδ = 0.1 (squares). (ii)UM = 2.5,
UX = 0.5t , εM = t , εX = −2t , andδ = 0.1 (circles).

In figure 3, we show a plot of the charge density at metal sites in the presence of diagonal
distortion (εM 6= 0.0) for alternationδ = 0.1 for the two extremal cases that we have studied,
namely, largeUM, largeεX, and smallUM, and smallεX for one particular value ofεM. We see
a dramatic change in the charge-density distribution in both cases. In the favourable case, the
disproportionation of the metal ion in the 3+ oxidation state into 2+ and 4+ oxidation states
is almost complete, while even in our least favourable case, the amplitude of the CDW is
quite significant. In the latter case, increasingεM increases the amplitude rapidly. This result
underlines the importance of diagonal distortion in producing a CDW ground state.

The variation in bond order along the MX chain is plotted for several values of the
parameters in figure 4 only for the left-hand half of the chain. The amplitude of the BOW
behaves similarly to the amplitude of the CDW. The diagonal distortion has a strong effect on
the BOW amplitude. Even in the most unfavourable case ofUM = 2.5t andεX = −2t , the
BOW picks up sufficient amplitude for the site-diagonal distortion that we have considered.
The earlier prediction of Tinka Gammelet al [1] that a BOW cannot exist for negative halide-
site energy with site-diagonal distortion lowering the metal-ion-site energy is not borne out by
our calculations.

The spin-density distribution shows a trend opposite to what is observed with CDW
and BOW instabilities. For largeUM and largeεX, in the uniform MX chain, the SDW
amplitude is fairly large. Introducing off-diagonal alternation reduces the amplitude, although
the alternation in the spin density still exists. However, on introducing diagonal distortion,
all of the metal sites become completely nonmagnetic. This behaviour shows that when the
CDW/BOW amplitude is large, the amplitude of the SDW is small. Figure 5 brings out this
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Figure 4. The bond order versus the bond index. (i)UM = 1.5t , UX = 0.5t , εM = 0, εX = −t ,
andδ = 0.1 (squares). (ii)UM = 1.5t , UX = 0.5, εM = t , εX = −t , andδ = 0.1 (circles).
(iii) UM = 2.5t , UX = 0.5t , εM = 0, εX = −2t , andδ = 0.1 (triangles). (iv)UM = 2.5t ,
UX = 0.5t , εM = t , εX = −2t , andδ = 0.1 (diamonds).

(a) (b)

Figure 5. The variation of (a) charge densities and (b) spin densities with site-diagonal distortion,
εM, versus the unit-cell index forUM = 2.5t , UX = 0.5t , εX = −2t , andδ = 0.1. (i) εM = 0.0
(open squares). (ii)εM = 1.0 (open circles). (iii)εM = 2.0 (filled squares). (iv)εM = 3.0 (filled
circles).

trend by comparing the charge and spin densities at metal sites for different values of the
site-diagonal distortion parameterεM. It is also interesting to note that for one set of parameter
values, the CDW and the SDW phases coexist (see part (ii) of figure 5).

We have also characterized the ground state in various regimes of the parameter by studying
the spin–spin and charge–charge correlation functions. Although these correlation functions
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have been computed for open chains, they can be Fourier transformed, if one assumes that
the correlations in the interior of the open chain are close to what would be seen in a ring.
This assumption was first made by Sorenson and Affleck [26] to obtain the structure factors
from open-chain DMRG calculations of spin systems. In our calculations, we have discarded
the last three unit cells on either end of the chain and have assumed the correlations to have a
reflection symmetry about the middle bond. This enables us to Fourier transform the correlation
functions.

Figure 6. The spin structure factor versus the momentum,q (in degrees). (a)UM = 1.5t ,
UX = 0.5t , εM = 0, εX = −t , andδ = 0.0. (b)UM = 1.5t , UX = 0.5t , εM = 0, εX = −t , and
δ = 0.2. (c)UM = 2.5t ,UX = 0.5t , εM = 0, εX = −2t , andδ = 0.2. (d)UM = 2.5t ,UX = 0.5t ,
εM = t , εX = −2t , andδ = 0.1.

In figure 6, we show the spin structure factor,S(q), for various values of the model
parameters. In the CDW phase which corresponds to smallUM, smallεX, and nonzero site-
diagonal distortion and alternation, we find thatS(q) is very small. However, for largeUM,
largeεX, zero site-diagonal distortion, but with nonzeroδ, the structure factor is large and peaks
atq = π . This result reflects the spin ordering of the ground state. The uniform structure factor
in figures 6(a) and 6(d) confirms the ground state to be in a non-SDW phase. This result is
also consistent with the charge and spin density, and also the bond-order data discussed above.
The structure factor corresponding to the charge–charge correlation function,ρ(q), shows a
different behaviour. Here, for largeUM and large negativeεX, the structure factor is almost
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uniform and does not show any pronounced peaks. However, for smallUM, small negative
εX, and nonzero site-diagonal distortion, the structure factor peaks atπ corresponding to the
existence of a CDW phase. The importance of the diagonal distortion is underscored by the fact
that even for nonzeroδ, smallUM, and small negativeεX, the peak atπ in the structure factor,
though discernible, is not pronounced. It is also interesting to note thatρ(q) shows small
oscillations away from the peak atπ which could be due to incipient long-wavelength CDW
distortions which could have nonzero amplitude in the thermodynamic limit as suggested by
Tinka Gammelet al [1].

3.1. MX chains marginally away from three-quarters filling

The DMRG method for MX chains cannot access the energy levels that have been studied
by optical spectroscopies. The reason for this is that there are a large number of low-lying
excitations in long MX chains which intrude while targeting excited states, and the absence of
the symmetries in open chains rules out the possibility of avoiding the intruder states. Hence,
we have been unable to study the optical properties of long MX chains by this technique.
However, there is considerable interest in the photogenerated gap states which arise from the
dissociation of the excitons produced in an optical experiment. These states are, typically,
the positive and negative polarons and bipolarons and the charged and neutral solitons of the
system. The DMRG method can easily access the polaronic and bipolaronic states. In what
follows, we present results of the DMRG study of these species at representative points in the
parameter space, namelyUM = 1.5t , εX = −t andUM = 2.5t, εX = −2t , corresponding to
the CDW and SDW regimes. These parameters are taken together withεM = 0.0 or t and
δ = 0.1, UX = 0.5t to explore the importance of site-diagonal distortion in the two regimes.

It is computationally prohibitive to distort doped chains self-consistently to study the
formation of polarons and bipolarons. However, the bond orders of the doped chains indicate
the susceptibility of the chain to distortion. Coulson’s formula for polyenes, for example,
gives a direct relation between bond orders and bond lengths. For small systems, our earlier
studies [16], carried out incorporating the distortion of the chain self-consistently, show that
the distortion given by a formula similar to Coulson’s formula gives bond lengths very close
to equilibrium bond lengths even at the first iteration. Therefore, the excess-charge-density
distribution together with bond-order patterns in the chain will give us information about the
nature of the states produced upon doping.

Since we are studying inhomogeneous system, it is important to follow the convergence
of the properties with increasing system size. We first discuss the energetics of the polarons

Table 2. The energies (in units oft) for doped MX chains of 35 units with one and two holes as
well as one and two electrons, for various representative parameters of the Peierls–Hubbard model.
I corresponds toUM = 1.5t , UX = 0.5t , andεX = −t , while II corresponds toUM = 2.5t ,
UX = 0.5t , andεX = −2t .

I II

εM = 0.0 εM = t εM = 0.0 εM = t

Doping δ = 0.0 δ = 0.1 δ = 0.0 δ = 0.1 δ = 0.0 δ = 0.1 δ = 0.0 δ = 0.1

Two holes −9.6308 −9.7157 −9.3790 −9.1630 −12.2875 −12.3646 −13.5137 −13.4442
One hole −4.8361 −4.8944 −4.6590 −4.5038 −6.1595 −6.2060 −6.8225 −6.7591
One electron 4.9375 4.9451 5.2900 5.3242 6.1935 6.2158 6.8850 6.9995
Two electrons 10.3529 10.3245 10.7410 10.8901 13.9677 13.9482 13.9909 14.0724
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and bipolarons, for the chosen parameter set. The energy per unit cell of the doped MX chain
obtained as the difference in total energy between two successive iterations converges very
rapidly to the thermodynamic limit for different parameter values. For nonzeroδ, the unit cell
contains two MX units, and the energy per unit cell is obtained as the difference in total energies
of the two successive odd iterations. In table 2 we give the energy for doping of MX chains of
35 units with one or two holes and one or two electrons. The magnitude of the doping energy
increases with increase in strength of the electron correlations. The stabilization energies upon
doping with one (two) hole(s) is (are) almost equal in magnitude to the energy required for
creating chains doped with one (two) electron(s) respectively. Neither the bond alternation nor
the site-diagonal distortion energy at the metal site have any noticeable influence on the doping
energetics. However, the positively charged bipolaron and the negatively charged bipolaron
are not placed symmetrically around the ground state in the energy scale. From the energetics,
one can see that at larger correlation strengths, the positively charged bipolaron is less stable
than two positively charged polarons. This is also true for negatively charged bipolarons
irrespective of the HubbardU . Thus, it appears from the energetics that both the positively
and the negatively charged bipolarons should dissociate into two polarons.

The definitive proof for the disproportionation of the bipolarons comes from comparing
the charge- and spin-density distributions at the metal sites of the bipolarons with those of
the polarons bearing charges of the same sign. The charge densities at the metal site for the
polarons and bipolarons are shown in figure 7. The polaron charge densities for (I)UM = 1.5t ,
εM = 0.0,UX = 0.5t andεX = −t are shown in figure 7(a), and for (II)UM = 2.5t , εM = 0.0,
UX = 0.5t , andεX = −2t they are shown in figure 7(c). The data for bipolarons for the
parameter set I are shown in figure 7(b) and for the set II they are shown in figure 7(d). For
the parameter set I (figures 7(a) and 7(b)), the additional charge is uniformly distributed over
the entire chain for (i) the positively charged polaron/bipolaron, (ii) the neutral chain, and
(iii) the negatively charged polaron/bipolaron. For the second set of parameters, i.e. at large
UM, we observe more localized charge distribution for both the positively charged polaron and
the positively charged bipolaron. We also observe two broad peaks (figure 7(d)) in the charge
distribution of the positively charged bipolaron which is indicative of disproportionation of the
positively charged bipolaron into two positively charged polarons. However, in the case of the
negatively charged polaron and bipolaron, the HubbardU prevents localization of the charge.
An earlier mean-field study [1] found the negatively charged polaron and bipolaron to be more
localized than the positively charged polaron and bipolaron. Our DMRG results correspond
to an on-site halide repulsion parameterUX which is smaller than the metal on-site repulsion
parameter,UM, and our study should have lent more support to this difference between the hole
defects and the electron defects predicted by the mean-field analysis. It appears, therefore, that
the mean-field approximation gives wrong trends for charge distributions of the defects. On
physical grounds, one should expect the on-site repulsions to spread out the excess negative
charge more than the excess positive charge.

The evidence for the disproportionation of the positively charged bipolaron into two
polarons is more pronounced when alternation in the chain is introduced (figure 8). The charge-
density distribution of the polaron (figure 8(a)) shows a single hump while that for the bipolaron
(figure 8(b)) shows two humps. The hole charge density is mostly confined to one sublattice
of the metal ion; the one in which the metal–halogen bond is shorter accommodates the excess
charge. The homogeneity of halogen charge-density distribution is not affected significantly
by doping. The spin-density distribution shows the disproportionation more clearly, as seen
from the two separate envelopes for the spin density in the bipolaron (figure 8(d)) compared
to a single envelope in the polaron spin-density distribution (figure 8(c)). This break-up of the
bipolaron is observed only for hole doping.
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Figure 7. The charge density of a metal site versus the unit-cell index for a uniform MX chain.
(a), (b) For polarons and bipolarons, respectively, forUM = 1.5t , UX = 0.5t , εM = 0, and
εX = −t . (c), (d) For polarons and bipolarons, respectively, forUM = 2.5t , UX = 0.5t , εM = 0,
andεX = −2t . (i) Positively charged (squares), (ii) neutral (circles), and (iii) negatively charged
(triangles) systems, in all of the panels, (a)–(d).

The effect of site-diagonal distortion on the disproportionation is very dramatic. We
compare the charge-density distribution for the positively charged polarons and bipolarons with
(figure 9(b)) and without (figure 9(a)) site-diagonal distortion. In both cases, the localization
of excess charge is confined to just one sublattice. In the system with site-diagonal distortion,
the sublattice with nonuniform charge density is on the metal site for which the metal–
halogen bond is long, corresponding to a negativeεM, while in the absence of site-diagonal
distortion, these metal sites have uniform charge distribution. This is seen as a changeover
in the charge-density dips from the lower envelope in figure 9(a) to the upper envelope in
figure 9(b). The changeover in the accommodation of excess charge upon introducing site-
diagonal distortion is associated with the strong mixed-valence character introduced by nonzero
εM. The disproportionation of the positively charged bipolaron is again found only for systems
with large on-site repulsions,UM.

The difference between MX chains at three-quarters filling and MX chains with one- and
two-hole dopings can be seen clearly if the difference in charge density between corresponding
metal sites of the neutral and doped chains is plotted as a function of the unit-cell index. We
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Figure 8. The charge density and spin density of a metal site for a positively doped MX chain
for UM = 1.5t , UX = 0.5t , εM = 0, andεX = −2t . Charge densities for (a) polarons and
(b) bipolarons. Spin densities for (c) polarons and (d) bipolarons. In all of the panels, (a)–(d),
(i) δ = 0.0 (squares), (ii)δ = 0.1 (circles), and (iii)δ = 0.2 (triangles).

show in figure 10 such difference plots for systems with site-diagonal distortion for weak- and
strong-correlation cases. The envelopes of the charge-density distributions of the polaron and
the bipolaron each show a single peak at small correlation strengths, while those for strong
correlations each exhibit two distinct peaks for the bipolaron (figure 10(a), (iv)). A similar
behaviour is found also in the spin-density distribution (figure 10(b), (iv)). The total charge
under the peak is nearly the same for the positively charged polaron and bipolaron. This is
because, in the bipolaron, part of the excess charge is accommodated uniformly on the halide
ions, which is not shown in the figure.

The negatively charged bipolaron does not disproportionate even upon introducing the
site-diagonal distortions. Apart from exhibiting mixed valency, the charge- and spin-density
distributions are uniform on each sublattice.

The bond-order distributions in the negatively and positively charged bipolarons are almost
similar to what is found in neutral chains. There is a tendency for the negatively charged
bipolarons towards the elongation of the bonds (as seen from smaller bond orders in the middle
of the chain), while the positively charged bipolarons have an opposite tendency, i.e., towards
bond-length contraction. This agrees with an earlier study of the lattice distortions of doped
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(a) (b)

Figure 9. The charge density of a metal site for positively charged polarons (squares) and bipolarons
(circles) forUX = 0.5t andδ = 0.1. Open symbols are forUM = 1.5t andεX = −t , and filled
symbols are forUM = 2.5t andεX = −2t ; (a) for εM = 0.0 and (b) forεM = t .

(a) (b)

Figure 10. The difference in (a) charge density and (b) spin density of metal sites with respect to
a neutral system for positively charged polarons and bipolarons for the same set of parameters as
in figure 9 with the singleεM = t .
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MX chains [3]. However, these marginal differences in the bond-order variations are reduced
on introducing site-diagonal distortions.

The essential difference between the positively and negatively charged bipolarons lies
in the disproportionation of the former into polarons in the strong-correlation limit, in the
presence of alternation and site-diagonal distortion. From an analysis of the difference in
bond orders between the neutral system and systems with one hole (electron) and two holes
(electrons), we find that the system with one hole shows a tendency to distort in the middle
of the chain while the two-hole system shows a tendency to have a spread in the bond-order
difference. The dependence of the difference in bond order of negatively charged polarons and
bipolarons are, however, very similar, and are consistent with a wide spread in the distortion
that is predicted from other studies.

In summary, we have studied the phase diagram of MX chains within a two-band extended
Peierls–Hubbard model employing the density-matrix renormalization group method. We
find that the site energy associated with site-diagonal distortion is the single most important
parameter for the transition from a SDW phase to a CDW phase in the ground state of the
system. The variation of other parameters, such as the site energy of the halide site, the on-site
HubbardU of the halide ion, and bond alternations, do not change the nature of the ground
state significantly. On the other hand, for the doped MX chains, both the bond alternation and
the site-diagonal distortion play a major role. For positively doped systems, introduction of
bond alternation leads to the localization of charge and spin densities. In the presence of site-
diagonal distortion, we observe that the positively charged bipolaron disproportionates into two
positively charged polarons in the strong-correlation limit. The negatively charged bipolarons
do not show evidence for disproportionation even for the longest chain length and for the
parameters that we have studied. We also find that there is a contraction of the bond length in
the case of positively charged polarons and bipolarons, and elongation for the corresponding
negatively charged species.
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